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ABSTRACT

Tracer gas techniques are becoming widely used to measure the ventilation rates in buildings.
As more detailed information is required for both energy and indoor air quality purposes,
researchers are turning to complex, multizone tracer strategies. Both single gas and multiple
gas techniques are being utilized, but only multigas are capable of uniquely determining the
entire matrix of air flows. Because of the inherent limitations in the ability to estimate zonal
concentrations, estimates of multizone air flows are highly imprecise for real buildings. How-
ever, exogenous information concerning physical constraints can allow a greatly improved esti-
mate and interpretation of results if combined with measured data. This report describes tech-

niques for improving tracer-gas derived ventilation data using physical knowledge about the
system under study.
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INTRODUCTION

Tracer gasses are used for a wide range of diagnostic techniques including leak detec-
tion™= and atmospheric tracin%.One application which has had a resurgence in the last
decade is the use of tracer gasses to measure ventilation (i.e., air flow) in builldireytila-
tion is an important process in buildings because of its impact on both energy requirements and
indoor air quality- both of which are topics of concern to society. Measurement of the tracer
gas concentration and source emission combined with conservation laws allows a quantitative
determination of the tracer transport mechanism (i.e., a measurement of the air flow).

The vast majority of the ventilation measurements made to date have involved a single-
tracer gas deployed in a single zone. This technique has proven very useful for buildings
which may be treated as a single zone (e.g., houses) and for more complex buildings in which
there are isolatable sub-sections. However, as the need to understand more complex buildings
has grown, tracer gas techniques that are able to treat multiple zones have been déveloped.
Multizone techniques recognize that not only does air flow between the outside and the test
space, but that there are air flows between different parts (i.e., zones) of the test space and, in
the complete case, they are able to measure these flows.

Because of the multiple sources of randomness associated with multizone tracer gas stu-
dies, precision may be relatively poor. However, a user of such tracer gas techniques has more
information available to him than is contained within the data alone. &lpsiori information
can greatly improve the accuracy and precision of the measurement if properly combined with
the data. This report will endeavor to show how to combine prior information with the data to
get ana posterioriset of air flow estimates and associated errors that improves upon the data.

BACKGROUND

The continuity equation expresses the conservation of tracer gas. In a general multizone
environment, anatrix form of the continuity equation must be used:

V-C(t) + Q(t)-C(t) = S(t) (1.1)
For every zone of the system there will be a row in both the concentration and source-strength
matrices. For every unique tracer gas there will be a column in those matrices. If there are N
zones, the volume and air flow matrices will be square matrices of order N and the continuity

equation can be rewritten with explicit indices:
N

> Vi G () + Q ()G, ®) | = S (1) (1.2)

i=1
If there are as many tracer species as there are zones, the problem isoall@dteand there
will be an exact answer; we shall focus our attention to the complete problem and therefore
assume that all of the matrices are square.

As Roulef3 points out, the continuity equation is rmassbalance equation and serious
errors can result if it is used asvalumebalance equation unless proper precautions are taken.
Accordingly, the concentrations are expressed in mass of tracer per unit volume to assure
correctness even when the density of air varies from zone to zone (e.g., if the zones are at dif-
ferent temperatures).
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Interpretation of Matrix Elements

Eg. 1 contains measured data and derived quantities. The measured data are the flows and
concentrations of each tracer gas in each zone. Specifim‘a,!lygj , and$1 all represent the
respective value of thg th tracer gas in the th zone.

The volume matrix can either assumed to be independently determined or derived from the
measured data. It is usually assumed (and will be herein) that the volume has been exo-
genously determined. For most practical purposes the volume matrix can be assumed diagonal
with the individual zone volumes as the entries. If, however, theh@t circuiting of the
tracer source from one zone to another, it can manifest itself as an off-diagonal volume ele-
ment, but the sum of each column must be equal to the (effective) physical volume of the
zone.

The interpretation of the air flow matrix requires a bit more explanation. The diagonal
elementsQ;;, represent the total flow out of that zone to all other zones and should have posi-
tive sign. The off-diagonal elements represent the flows between zones; speciﬁ@,-ljly, is
flow from the j th zone to thé th zone. Since the flow from jhe th zone td the th zone can
be different from the flow from theé th zone to the th zone, this matrix will in general not be
symmetric.

The flow matrix explicitly contains information about flows between measured zones and
the total flow. If there are flows to zones other than those being measured (e.g., outside), the
sum of some rows and columns of the flow matrix will be positive; and system is said to be
open If all zones of the building are monitored these flows to “elsewhere” are attributed to
air exchange with the outside.

ESTIMATION OF FLOWS FROM MEASURED DATA
Inversion of eq. 1 is a straightforward mathematical problem:

Q) = | S(t) - Vec(t) |-cty™ @

If there were no uncertainty in the measured data (i.e., the concentrations and source strength),
this inversion would give the correct (and only) answer. In any real experiment, however,
there will be uncertainty in the measurements due either to instrumentation errors or other ran-
dom processes. Such uncertainty can be described by a probability distribution as to where the
true value lies. Tarantolagives an excellent discourse on the issues related to the general
problem of extracting model parameters from measured data.

The covariance of the data can be calculated if the uncertainties in the measured concentra-
tions and source strengths are kno@vajl of the data covariances* used herein are so calcu-
lated, but the results of this report can be used howsoever the covariance is determined. The
remainder of this report assumes that the errors can be assumed to be Gaussian. This common
assumption may not be strictly true for a variety of reasons (e.g., the flow and concentration
values are positive definite, mixing is not a Gaussian process, etc.). For most common appli-
cations, however, the assumption is unlikely to lead to significant errors and we will use it. If

* The reader should be careful to note the number of dimensions used in the matrix notation. The air flows are naturally treated as
a matrix (i.e., tensor of rank 2) which implies that the covariance "matrix" is really of rank 4. To compare with more standard
treatments, the air flowsould be considered as a vector and the covariance as a normal matrix. As long as it is realized that the
covariance matrix has twice the dimensions of the air flows, the matrix notation will be left general.
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the covariance of the flows are known and can be assumed Gaussian, the probability distribu-
tion for the true value is as follows:

Wo(QlQq) = &(Qq) e I Qull? 3)

where subscript "d" implies that the quantity is calculated directly from the data. The normali-
zation for the probability is as follows:

-t
£0(Qq) = [(2n)“ |0 ] (4.1)
and the determinant:
| O| = Determinant of the Covariance Matrix (4.2)
The norm used in the above equations,
I QQull 2= [Q-Qs] O™ | Q-Qul ©

represents a normalized distance between two points using the covariance as the weighting
(i.e., the metric of the space). (This square may be familiar to the reade)(%s a variable.)

It should be noted that the mean, median, and maximum likelihood estimator (i.e., the
mode) of the distribution are all equal to the point value as calculated by the inversion of eq. 1

(i.e., Qq).

Incorporation of Prior Estimates

It is quite often the case that we have some knowledge about the result that does not come
from the current data. Such a priori information is called prior knowledge or more simply
referred to as the "priors". Two common examples of such prior knowledge would be an
independent measurement of (some of) the same quantities, or some physical knowledge about
a particular flow. If this knowledge can be expressed as mean set of air f@sz, , With

(Gaussian) covarianceﬁ)—p , we can combine our measured value with our prior knowledge to
improve our estimate of the true value:

Q=0 [0 d_l.Q - op_l.Qp] (6.1)
-1 -1)-1
o-lo, +0, | (62

Even if the prior knowledge is very uncertain, its effect can only be to improve our esti-
mate of the true values, provided we know how uncertain the prior knowledge is. This
improvement can be especially useful when the problem is poorly conditioned and one or more
flow elements may be extremely uncertain. Any relationship that can be expressed linearly can
be reflected in the prior. If little prior knowledge is available for a particular element, any rea-
sonable value may be usegrovided that its variance is large enough to cover the bulk of its
allowed range.

The prior covariance and the final covariance can be combined to give a resolution opera-
tor’ which describes the quantities that are well-resolved by the data and those that are not.
The resolution matrix is defined as follows:
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-1
R=1- Gp o) @)
RQ, =r{Q, (8)

The eigenvectors of this matrix are the linear combination of the parameters which are
independently resolved by the data. The eigenvalues represent how well the data resolves
those vectors: an eigenvalue of zero means that all the information about that combination
came from the prior knowledge (i.e., no information in the data); while an eigenvalue of unity
means that the data completely determined that combination of paramejers. , the square root
of the eigenvalue, plays the role of a correlation coefficient in a multilinear regression in that it

determines how well a quantity), ) is determined by the data (as represenﬁjj by ).

Sometimes it is stated that no prior information was known about the flows. But if we
interpret "no prior information" to mean that there is a large (uncorrelated) variance on each
term and that that variance is constant for all parameters we can reduce the problem to finding
the eigenvalues and eigenvectors of the initial covariance:

O4Q) = 65Q) ©)
These eigenvalues represent the variances of the (uncorrelated) eigenvectors. This type of prin-

cipal value decomposition is used in analysis of errors, but often ignores the assumptions stated
above.

There are other approaches to the analysis of error for multizone tracer problems.
Roulep, D'Ottavio,” and WalkeiLO have all proposed methods based on the condition number
of air flow and concentration matrices. These methods do not in fact estimate the uncertainty
of the air flow matrix, but rather they set bounds on specific errors. As such, they may be
useful in estimating errors for the incomplete problem, but are not as powerful as the principal
value methods described herein.

PHYSICAL KNOWLEDGE OF THE SYSTEM

The previous sections do not contain all of the information that is known about the system
of equations. The flow matrix does not even contain any elements relating to flows to or from
outside- which are usually the flows of most interest. To properly interpret the results more
physical knowledge is needed.

Eq. 1.2 is anopenset of equations; that is, there are flows that can go to and from "else-
where", where "elsewhere" is usually interpreted to mean outside. These flows are inferred by
assuming that there are no unaccounted for sources or sinks of tracer and that the volume of
air flowing in and out of a zone is equal.

Augmentation of the Matrices

We can make these physical assumptions more explicit by augmenting the matrices by an
additional (zeroth) tracer to account for the conservation of air and zone to account for outside
flows. ThusQjq represents the flow from outside to tite zone, andQ; represents the flow
to outside from thgth zone, andQy represents the total flow to all zones from outside.
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The outside zone is different from the other zones in several ways. The outside zone must
supply closure to the system so that there is no net flow of air or tracer into or out of the sys-
tem. For this to be true the following conditions must be met:

%Sk =0 k=0....N (10.1)
whiclr_1 in turn implies that

%Vij =0 j=0...N (10.2)
and,l_therefore,

%Qij =0 j=0....N (11)

These three expressions then serve as defining relations for the zeroth row of there respective
matrices. The zeroth row of the concentration matrix may contain any background concentra-
tion of tracer gas.

Cox = outside concentration of gas k H0---N 12)

The zeroth column of the concentration matrix is the density of air in the zones:

CjOEpj J:O N (13.1)
Since the there is no addition of air to any zones,

S0=0 i=0---N (13.2)
the air flow matrix must meet the following criterion:

N N

2 Qi =-2V;g i=0---N (14)

j=0 j=0

Note that if the density of air is invariant and equal in every zone, this relationship is the tran-
spose analogue of eq. 11.

Finally, in order to continue to meet eq. 1 in the augmented style, the remaining volume
terms must be zero:

Vg =0 i=0---N (15)

Thus the outside zone is treated as a fully coupled zone with zero effective volume, but with
tracer sinks.

We have then two equivalent descriptions: the set of equations defined by the eqgs. 1 10 12
and 13. or the unaugmented set of equations, plus the definitions derived for the outside flows
egs. 11 14. Assuming that the time change of density in any zone is small, these flows can be
rewritten as follows:

N
Qo = ~2. Q j=0---N (16.1)
i=1
N Pj .
Qo=-2Q— i=0---N (16.2)
j=1 pO

Either method may be used to determine the flow matrix, but since the augmented matrices are
larger by one dimension, their inversion may take significantly longer. Hence, for computa-
tional efficiency it is better to use the unaugmented version.
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Since these equations completely determine the flows to and from outside, the probability
description of the air flow matrix need neaixplicitly contain them. Accordingly, the matrix
represented by the symbQ  should be taken to meamuthagmented flow matrix, with the
outside flows implied by eq. 16.

Physicality Constraints

In our definition of flow matrices only certain values of individual elements represent phy-
sically meaningful values, which are reflected in the signs of the matrix elements. The physi-
cality constraints can be summarized as follows:

i=0- N
Qj <0 i 17)
j=0"'N

which when included with eqgs. 16 yield the following weak condition:
Qii>0 i=0---N (18)
Taken together egs. 16 and 17 represent the physicality constraints on the air flow matrix.

These expressions for incorporating prior knowledge in the previous section are strictly
true only for Gaussian distributions. In the case of these physicality constraints, we have some
critical prior knowledge that cannot be expressed with a Gaussian covariance; specifically, we
know that the true value must meet all of the physicality constraints. Although we cannot use
the Gaussian expressions, we can modify the probability distribution to account for our
knowledge:

(1l QQull |
$(01Qy = RHOQ) £(@g ¢ ! @ (19)
whereRHO represents the physicality constraint,
1 if Q is physically possible

= . 20
RHOQ) 0 otherwise (20)
and agairt normalizes the distribution:
1
€(Qq) =
“k[Il QQul (21)

2
IRHO(Q) e | d'Q
Thus the (unnormalized) distributid®HO  represents our prior knowledge.

Because the addition of the physicality constraints has truncated the erstwhile normal dis-
tribution, the mean, median, and mode will all have changed values. These values will no
longer be equal to each other and none of them will be a totally unbiased estimator of the the
true value. If we wish to characterize this distribution by a single parameter, any of the three,
a priori, could be considered, but each has different consequences. Once the estimator has
been found, however, the covariance can be calculated from it and the distribution:

O =0, %J’H Q.0 29(Q Qg dvQ (22)

Thus, the posterior covariance is just a simple multiple of the covariance of the original data.
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The posterior variance will be minimized if the estimator is the mean of the distribution.
When the initial point,Qy , is allowed and far from the (physicality) boundary, this integral
will be unity and the two covariances are the same; as the initial point approaches the boun-
dary the posterior covariance gets smaller; as the initial point moves into the disallowed area,
the posterior covariance gets quadratically larger. The expectation value of such posterior
covariance (integrated over the distribution of initial points given a true value) is the same as
the prior covariance, which suggests that the integral above plays the role of a chi-squared
statistic. Unfortunately, it does not follow a chi-squared distribution. Sh%il’ms shown
that our type of distribution can be described by one which is a combination of chi-squared
distributions having degrees of freedom up to the total number N.%., in our case).

The fact that the mean has minimum variance might suggest that it is the estimator of
choice. For our purposes, however, the mean has several disadvantages (which will be left
unproven) that make it unsuitable for use as the point estimate. The mean of our (truncated)
distribution is a biased measure (i.e., on average it will tend to predict a point estimate that is
slightly further away from the physicality limits than the true value). The bias is biggest when
the true value is nearest these limits. Since we expect that (for the interzonal flows) the true
values will often be at the limits (i.e., there will be no interzonal flow between some zones),
the mean is an inappropriate point estimate.

The median is sometimes considered an estimator because it is more robust. That is, it is
less sensitive to low probability events. The median, however, is always a more biased esti-
mate of the true value for our case than is the mean. Since the robustness of the median is not
of significant usefulness to justify the increased bias, the median is not an appropriate point
estimate.

In contradistinction to the mean and median, the maximum likelihood indicator has several
advantages as an estimator. By definition it is thest likelypoint to be the true value.
Although biased, the maximum likelihood indicator is a less biased indicator than the mean for
our case. Furthermore, when the initial point (i®4 ) is physically allowed, that initial point
is the maximum likelihood indicator. Since for most tracer applications it is the point estimate
rather than its variance which is most important, we choose the maximum likelihood estimator
as our point estimate of the true value of the air flows.

When the initial point is allowed no further calculation to get the maximum likelihood
indicator in necessary. When the original point is physically prohibited, the determination of
the estimator can be reduced to a minimization problem with bounded values where we minim-
ize the norm:

Q: || Q.Qql| 2 is a minimim (23)
If Gaussian priors are available as well as the physicality constraints, they should be

applied before the physicality procedure. If the new point is still disallowed then the minimi-
zation should be over both initial point and prior estimate:

Q: || Q,Qpll 2+ || ©,Qql| 2 is a minimim (24)
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Example

As an example of this technique we consider the dataset presented by D’%iitavidnich
the matrices were augmented. The augmentation procedure was not complete, but was
equivalent to the one presented herein, assuming all of the air densities were constant and
equal (and arbitrarily set to unity) and the concentrations were invariant. Then a matrix error
propagation method that assumed small, normally distributed errors was used to find the uncer-
tainties in the flows. Although the technique is different from the general technique of ref. 8,
the results are equivalent for the special case of the data and are displayed in table 1.

TABLE 1: Example Air Flows and Uncertainties for PFT Datasef/[lnn]
Qjj+0q, 1 2 3 Outside
1 6674 107 -314 64 B 25 368 6[1
2 -132+ 43 454 52 -2 33 130 33
3 -17+5 2% 6 29% 43 254 37
Outside 51& 92 118 69 &7 42 B3 59

The errors can be calculated from the original reference. The calculation of the covariance
was not done by the authors, but was done in a separate Tepbiding our initial (i.e.,
uncorrected) values of the air flows and covariance matrix we can find the linear combinations
of flows that make up the principal components of this data and display them in table 2.

Table 2: Coefficients of Principal Components of Measured Data
4 o mi || 11 21 31 12 22 32 13 23 33
3 10 -0.76 -0.65 -0.03 -0.03 0.04 -0.00 -0.06 0.01 -0.01
6 37 -0.65 0.76 -0.03 -0.01 -0.04 0.04| -0.06 -0.03 0.00
7 46 -0.00 0.01 0.59 -0.55 0.21 0.54 0.07 0.07 0.0p
8 61 -0.01 0.01 054 0.53 0.38 -0.09 -0.31 -0.42 -0.08
2 5 -0.03 -0.06 0.19 0.24 -0.73 0.34 0.28 -0.38  -0.20
4 16 -0.01 0.02 0.38 -0.39 -0.23 -0.65 | -0.07 0.01 -0.47
9 124 -0.10 0.03 0.18 0.23 0.27 -0.22 0.87 0.17 0.00
5 26 -0.02 -0.01 0.34 0.37 -0.30 0.08 -0.22 0.77 0.14
1 2 -0.02 -0.01 0.18 -0.16 -0.25 -0.38 0.05 -0.23 0.85

The rows are ordered in an approximately diagonal fashion for clarity. The eigenvalue
numbers indicate order of increasing variance, so that the lower numbers are the most well
determined combinations and the higher numbers are the least well determined. The coeffi-
cients have been normalized to unity. As indicated by blodd entries certain vectors are
dominated by a single air flow value; as indicated by itadics certain pairs of vectors are
dominated by pairs of air flows.

There are several interesting observations one can make. The most well determined com-
bination (i.e., eigenvalue #1) is dominated by the 3,3 air flow (i.e., the total flow in_or out of
zone 3). Thus is appears that this combination is much more well determined (cf.BEhQ m
than the precision on that element (from table 1) would suggest (cf. ZBrin In a similar
way the last entry (i.e., #9) which represents the least well determined combination of air flows
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is dominated by the 1,3 value and is more poorly determined (cf. ﬁnrbnthan its variance
would indicate (43 rivhr). Such a result is not surprisirgioting that that element was the
one which came out with a physically impossible result.

There are two pairs of rows (and columns) which are dominated by a nearly equal pair of
values- indicating that the sum and difference of these two air flows is a principally deter-
mined quantity. With the exception of the #3, all of the eigenvectors that involve zone 1 have
large variances; such a result may indicate a problem with the measurements in that zone.

We can take this example further by putting the physicality constraints on the point esti-
mates. If we integrate the probability distribution over the allowed space, we find that only
31% of the initial distribution is in the physically permitted space.

In this exampleQ, 3 is physically disallowed. We can use the minimization technique to
find the best possible solution. Using the covariance and the physicality constraints the
adjusted results become the following:

TABLE 3: Fixed Air Flows and Uncertainties for PFT Datasets[hr]
Qij io—Qij 1 2 3 Outside
1 653t 94 -29% 56 H 22 362 54
2 -130+ 38 448 46 -206 29 133 2P
3 -1A4 2 5 292 38 258 33
Outside 506 81 134 61 &7 37 27 952

The new point is, of course, physically allowed so that the offending element has been
moved to the boundary. To do this with minimal change in the norm required that some of the
other elements be adjusted also. The covariance calculated at this new point is different for
two reasons: 1) the central value is slightly different and 2) the integral in eq. 22 induces a
scale factor based on the minimization. The first reason is a small shift, but the scale factor
for this dataset is approximately 0.9.

TIME-SERIES DATA

The preceding sections have described methods to estimate air flows from a single set of
measured data. Many of the tracer gas systems currently in use measure the concentrations
and flows at a high data rate; that is, there are many measurements in the time it takes for the
system (i.e., the air flows) to change significantly. In such a case, the data contains redundant
information, which can be used to improve the estimate of the underlying air flow.

Physically we know that the flow values are correlated in time, and we can assume that
we can estimate a (Gaussian) correlation time for the systegn The most straightforward
approach to solving the time series problem would be to do a fit for each time point (as
described above) combined with a simultaneous correlation in time for all the points. How-
ever, since in such a global approach the number of dimensions in the fit grows very large, the
computing requirements become unreasonable. (Requirements typically go as the cube of the
number of dimensions.) Furthermore, such a global proceduseassa] that is, values at any
time are related to events that happened both beforeaftedthe event. We, therefore, would
prefer an analysis method that is causal, local and contains fewer dimensions.
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If we assume that over some time perioy , the underlying system does not change
much, we can then integrate the continuity equation (eq. 1) over this period and treat the air
flows as constant. The integrated continuity equation will have a significantly smaller (data)
covariance than the instantaneous one. The longer the integration time is the more precise the
determination of the air flows will be. One must be careful, however, not to make the time too
long or the assumption of constant air flows will break down and a bias will be introduced.
The passive ventilatioomeasurement technique suffers from this k]ﬁs:l’ he trade-off between
precision and bias in the selection of the integration time constant requires some prior
knowledge about the system; however, for houses without mechanical systems, this time is typ-
ically on the order of one hour.

Because we know that the underlying air flows are smoothly varying causal functions of
time, we can use a prior (i.e., previous in time) estimate of the air flows to improve a current
estimate. To do so we must estimate an upper bound to the covariance between two air flow
values separated by an integration time, and then use the prior-knowledge technique to find a
new estimate. A very reasonable assumption is that the air flows change by much less than
one air change rate in a correlation time. Thus if two measurements are made at a time ot
apart, the prior covariance should be as follows:

ot?
Gp <

6

Usually we assume the volume matrix to be diagonal and therefore the covariance matrix will
be diagonal and has a very strong dependence on the correlation feggth,

vV (25)

If more specific knowledge of the time behavior of air flows is known, a more detailed
prior covariance than the above equation could be used. However, in most cases there is little
to be gained by such a procedure.

The time series analysis technique can be summarized as follows:

* INTEGRATEthe continuity equation over the correlation tinTg () at a number of overlap-
ping points separated by a convenient tide<ta ) spacing.

« INVERTthe integrated data to get an estimate of the flow valGgg () calculate the covari-
ance of the dataQ-d ), and calculate outside flows.
 COMBINE this initial estimate with the previously calculated time poi@tp( ) using a prior

covariance Op ) based on the correlation length.

e ADJUST if necessary, these value® ( ) to meet the physicality constraints by minimizing
both the norm calculated from the initial point and the prior value using the appropriate
covariances.

« CALCULATEthe final covariance@ (Q) )based on the final value.

 REPEATfor every time point in the dataset

e POST PROCES$he data for presentation or reduction. Weighted averaging may be
accomplished using the covariance. The data may be filtered or smoothed to further
reduce noise or unwanted frequencies without adding bias.
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Time-Series Example

LBL has recently completed a MultiTracer Measurement System (MT}V?Sthat uses
multiple tracer gasses in a fully automated manner to measure flows and concentrations for the
purpose of determining air flows in a multizone environment. The analysis technique
described herein was used to estimate the air flows from the data measured with MTMS.

As an example we have chosen a two-story house situated in the Seattle area of the state
of Washington. Figure 1 is a plot of air flow data calculated by integrating the data over a one
hour period but no adjustment or incorporation of data was done on it. There are an entire set
of air flows which may be graphed, but we have elected to show only the ones which are
flows to the (upstairs) bedroom zone. The uncertainties are typically in the range of 1-10
m~/hr. As can be seen the data is very unstable; such behavior is not surprising as there is
unsteady mixing of the tracer gasses in this house. Many of the points are clearly unphysical.

The house is insulated and has forced air (electric heat-pump) heating. This two story
house has one third of the lower story taken up by an (unconditioned) garage; the main living
area is upstairs. The floor plan is open with a wide, open stairway between the two floors.
Each room has a heating register and the return is locatkirng area

Figure 2 is the same dataset after all of the steps in the analysis are completed. Most of
the points needed to be adjusted and in some cases the adjustment was highly significant; how-
ever, when the posterior covariance was used to calculate a weighted average, the uncertainties
are not changed significantly from the unimproved data. In general the data is both more accu-
rate and more precise.

From the finer results in figure 2 it is possible to ascertain some of the behavioral effects
going on in this house. For example, in the morning the heating system comes on after set
back and presumably interior doors are opened and windows shut, while at bedtime the oppo-
site happens. This shift can most readily be seen in the January 15 data in which the nightime
flow between the two upper floor zones is increased at bedtime, while the flow from the lower
zone is decreased as the forced air system no longer distributes the air between zones.

CONCLUSION

Point estimates of air flows are often desired for determining energy and pollutant flows in
multizone buildings. Because of the high degree of correlation between different components,
the analysis of multizone air flows from tracer concentration and flow data is a difficult task.
The simple analysis techniques, which are typically used to analyze such data, do not take into
account the high degree of correlation and therefore may not provide a good picture of the
situation.

This report has demonstrated that the estimates and their interpretation can be significantly
improved by using the information contained in the covariance matrix. The following recom-
mendations use the covariance to improve the point estimate and its interpretation:

* A principal component decomposition of the covariance matrix gives a better indication of
the precision of the point estimate than do the individual variances.

« If prior information is available it should be incorporated into the estimate. The resolution
matrix can then be used to determine how much the data determines the air flow parame-
ters.
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If the point estimate is physically impossible, the norm of the difference between that
point and the physical possible estimate should be minimized subject to the physicality
constraint. The final covariance matrix can then be scaled based on the fit.

For time-series data:

A correlation time should be chosen based on knowledge of the system being measured.

For each desired output point the continuity equation should be integrated over the correla-
tion time to maximize precision and minimize bias.

The previous time series point should be used as a prior in the calculation of the current
value.

Once the best estimate of the air flow matrix has been calculated, its covariance can be

used to estimate its uncertainty. The eigenvalue techniques presented herein are superior to
condition number error estimates because they can be used to 1) determine which linear combi-
nation of air flows can be determined independently, 2) how well determined are those combi-
nations and 3) how much of the determination is due to the measured data and how much is
due to prior knowledge about the system.
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Instantaneous tracer gas concentration [l?@/m
Multizone tracer gas concentration matrix [k&jn
Identity Matrix [-]

Number of zones [-]

Ventilation [n/h]

Ventilation matrix [rr?’/h]

Ventilation matrix from measured data f’v’h]
Ventilation matrix from prior information [r%/h]
Point estimate of ventilation matrix [?‘rh]
Resolution matrix [-]

Correlation coefficient [-]

Instantaneous source strength of tracer ga%lr[in
Multizone tracer source strength matrix%fh]
Time [h]

Time difference between measurements [h]
Correlation (Integration) time [h]

Volume [m3]

Zone volume matrix [rﬁ]

Density of air in a zone [kg/r?ﬂ

(Unnormalized) Distribution of physically allowed values [-]
Standard deviation of an air flow [?‘fhr]

Covariance matrix of air flows [l:%hr]2
Covariance matrix from measured datag[hr]2

Covariance matrix from prior information ﬁ‘Vhr]2
Probability normalization [-]
Indices indicating zoneQ,1- - - N ]

Index indicating eigenvaluel[- - - N? ]
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LIST OF FIGURES

1) Figure 1 is a plot of the uncorrected air flows to the upstairs bedroom zone as a function
of time from January 14 through January 17. The flows are from the main living zone,
the family (lower floor) zone, outside, and the total flow.

2) Figure 2 is the same data as figure 1, but analyzed and adjusted as described in the text.
In this corrected data, the change in ventilation at bedtime is evident.
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